Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Viruses ; 15(5)2023 05 12.
Article in English | MEDLINE | ID: covidwho-20234105

ABSTRACT

The SARS-CoV-2 genomic data continue to grow, providing valuable information for researchers and public health officials. Genomic analysis of these data sheds light on the transmission and evolution of the virus. To aid in SARS-CoV-2 genomic analysis, many web resources have been developed to store, collate, analyze, and visualize the genomic data. This review summarizes web resources used for the SARS-CoV-2 genomic epidemiology, covering data management and sharing, genomic annotation, analysis, and variant tracking. The challenges and further expectations for these web resources are also discussed. Finally, we highlight the importance and need for continued development and improvement of related web resources to effectively track the spread and understand the evolution of the virus.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Genomics , Public Health , Research Personnel
2.
Virol Sin ; 2023 May 09.
Article in English | MEDLINE | ID: covidwho-2319241

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has seriously threatened global public health and caused huge economic losses. Omics studies of SARS-CoV-2 can help understand the interaction between the virus and host, thereby providing a new perspective in guiding the intervention and treatment of the SARS-CoV-2 infection. Since large amount of SARS-CoV-2 omics data have been accumulated in public databases, this study aimed to identify key host factors involved in SARS-CoV-2 infection through systematic integration of transcriptome and interactome data. By manually curating published studies, we obtained a comprehensive SARS-CoV-2-human protein-protein interactions (PPIs) network, comprising 3591 human proteins interacting with 31 SARS-CoV-2 viral proteins. Using the RobustRankAggregation method, we identified 123 multiple cell line common genes (CLCGs), of which 115 up-regulated CLCGs showed host enhanced innate immunity and chemotactic response signatures. Combined with network analysis, co-expression and functional enrichment analysis, we discovered four key host factors involved in SARS-CoV-2 infection: IFITM1, SERPINE1, DDX60, and TNFAIP2. Furthermore, SERPINE1 was found to facilitate SARS-CoV-2 replication, and can alleviate the endoplasmic reticulum (ER) stress induced by ORF8 protein through interaction with ORF8. Our findings highlight the importance of systematic integration analysis in understanding SARS-CoV-2-human interactions and provide valuable insights for future research on potential therapeutic targets against SARS-CoV-2 infection.

3.
Comput Struct Biotechnol J ; 20: 4015-4024, 2022.
Article in English | MEDLINE | ID: covidwho-2288930

ABSTRACT

Co-infection of RNA viruses may contribute to their recombination and cause severe clinical symptoms. However, the tracking and identification of SARS-CoV-2 co-infection persist as challenges. Due to the lack of methods for detecting co-infected samples in a large amount of deep sequencing data, the lineage composition, spatial-temporal distribution, and frequency of SARS-CoV-2 co-infection events in the population remains unclear. Here, we propose a hypergeometric distribution-based method named Cov2Coinfect with the ability to decode the lineage composition from 50,809 deep sequencing data. By resolving the mutational patterns in each sample, Cov2Coinfect can precisely determine the co-infected SARS-CoV-2 variants from deep sequencing data. Results from two independent and parallel projects in the United States achieved a similar co-infection rate of 0.3-0.5 % in SARS-CoV-2 positive samples. Notably, all co-infected variants were highly consistent with the co-circulating SARS-CoV-2 lineages in the regional epidemiology, demonstrating that the co-circulation of different variants is an essential prerequisite for co-infection. Overall, our study not only provides a robust method to identify the co-infected SARS-CoV-2 variants from sequencing samples, but also highlights the urgent need to pay more attention to co-infected patients for better disease prevention and control.

4.
J Mater Cycles Waste Manag ; : 1-14, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2246170

ABSTRACT

Based on the medical waste quantity and patient data during the corona virus disease 2019 (COVID-19) outbreak in China, this study used scenario analysis to quantitatively analyze the temporal and spatial evolution of medical waste generation during the pandemics. First, the results show that the estimated medical waste per capita reached 15.4 kg/day if only patients were considered in Scenario 1, while the figures were reduced to 3.2 kg/day in Scenario 2 and 2.5 kg/day in Scenario 3 when the effects of both the patient type and the number of medical staffs were considered. The estimated results also demonstrated that the per capita medical waste related to the epidemic showed the characteristics of a U-shaped and trailing phenomenon over time. Then, the amount of medical waste related to the COVID-19 generated that generated due to COVID-19 was estimated in Hubei, Heilongjiang, Zhejiang, Henan and Hunan provinces under Scenario 2 and Scenario 3. The results indicated that the spatiotemporal evolution characteristics of five provinces show the significant differences, and the patient type has a remarkable influence on the generation of medical waste. Finally, a novel decomposition-ensemble approach was designed to make a better short-term forecasting effect for future medical waste generation in different provinces. Supplementary Information: The online version contains supplementary material available at 10.1007/s10163-022-01523-5.

5.
Emerg Infect Dis ; 29(2): 371-380, 2023 02.
Article in English | MEDLINE | ID: covidwho-2215191

ABSTRACT

The Omicron variant of SARS-CoV-2 has become dominant in most countries and has raised significant global health concerns. As a global commerce center, New York, New York, USA, constantly faces the risk for multiple variant introductions of SARS-CoV-2. To elucidate the introduction and transmission of the Omicron variant in the city of New York, we created a comprehensive genomic and epidemiologic analysis of 392 Omicron virus specimens collected during November 25-December 11, 2021. We found evidence of 4 independent introductions of Omicron subclades, including the Omicron subclade BA.1.1 with defining substitution of R346K in the spike protein. The continuous genetic divergence within each Omicron subclade revealed their local community transmission and co-circulation in New York, including both household and workplace transmissions supported by epidemiologic evidence. Our study highlights the urgent need for enhanced genomic surveillance and effective response planning for better prevention and management of emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , Humans , New York/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Commerce
6.
J Med Virol ; 95(1): e28411, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173197

ABSTRACT

A series of nonpharmaceutical interventions (NPIs) was launched in Beijing, China, on January 24, 2020, to control coronavirus disease 2019. To reveal the roles of NPIs on the respiratory syncytial virus (RSV), respiratory specimens collected from children with acute respiratory tract infection between July 2017 and Dec 2021 in Beijing were screened by capillary electrophoresis-based multiplex PCR (CEMP) assay. Specimens positive for RSV were subjected to a polymerase chain reaction (PCR) and genotyped by G gene sequencing and phylogenetic analysis using iqtree v1.6.12. The parallel and fixed (paraFix) mutations were analyzed with the R package sitePath. Clinical data were compared using SPSS 22.0 software. Before NPIs launched, each RSV endemic season started from October/November to February/March of the next year in Beijing. After that, the RSV positive rate abruptly dropped from 31.93% in January to 4.39% in February 2020; then, a dormant state with RSV positive rates ≤1% from March to September, a nearly dormant state in October (2.85%) and November (2.98%) and a delayed endemic season in 2020, and abnormal RSV positive rates remaining at approximately 10% in summer until September 2021 were detected. Finally, an endemic RSV season returned in October 2021. There was a game between Subtypes A and B, and RSV-A replaced RSV-B in July 2021 to become the dominant subtype. Six RSV-A and eight RSV-B paraFix mutations were identified on G. The percentage of severe pneumonia patients decreased to 40.51% after NPIs launched. NPIs launched in Beijing seriously interfered with the endemic season of RSV.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Beijing/epidemiology , Phylogeny , COVID-19/epidemiology , COVID-19/prevention & control , Respiratory Syncytial Virus, Human/genetics , Multiplex Polymerase Chain Reaction
7.
Virus Evol ; 8(2): veac071, 2022.
Article in English | MEDLINE | ID: covidwho-2107592

ABSTRACT

Phylogenetic analysis has been widely used to describe, display, and infer the evolutionary patterns of viruses. The unprecedented accumulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes has provided valuable materials for the real-time study of SARS-CoV-2 evolution. However, the large number of SARS-CoV-2 genome sequences also poses great challenges for data analysis. Several methods for subsampling these large data sets have been introduced. However, current methods mainly focus on the spatiotemporal distribution of genomes without considering their genetic diversity, which might lead to post-subsampling bias. In this study, a subsampling method named covSampler was developed for the subsampling of SARS-CoV-2 genomes with consideration of both their spatiotemporal distribution and their genetic diversity. First, covSampler clusters all genomes according to their spatiotemporal distribution and genetic variation into groups that we call divergent pathways. Then, based on these divergent pathways, two kinds of subsampling strategies, representative subsampling and comprehensive subsampling, were provided with adjustable parameters to meet different users' requirements. Our performance and validation tests indicate that covSampler is efficient and stable, with an abundance of options for user customization. Overall, our work has developed an easy-to-use tool and a webserver (https://www.covsampler.net) for the subsampling of SARS-CoV-2 genome sequences.

8.
Virus evolution ; 2022.
Article in English | EuropePMC | ID: covidwho-1998565

ABSTRACT

Phylogenetic analysis has been widely used to describe, display and infer the evolutionary patterns of viruses. The unprecedented accumulation of SARS-CoV-2 genomes has provided valuable materials for the real-time study of SARS-CoV-2 evolution. However, the large number of SARS-CoV-2 genome sequences also poses great challenges for data analysis. Several methods for subsampling these large data sets have been introduced. However, current methods mainly focus on the spatiotemporal distribution of genomes without considering their genetic diversity, which might lead to postsubsampling bias. In this study, a subsampling method named covSampler was developed for the subsampling of SARS-CoV-2 genomes with consideration of both their spatiotemporal distribution and their genetic diversity. First, covSampler clusters all genomes according to their spatiotemporal distribution and genetic variation into groups that we call divergent pathways. Then, based on these divergent pathways, two kinds of subsampling strategies, representative subsampling and comprehensive subsampling, were provided with adjustable parameters to meet different users’ requirements. Our performance and validation tests indicate that covSampler is efficient and stable, with an abundance of options for user customization. Overall, our work has developed an easy-to-use tool and a webserver (https://www.covsampler.net) for the subsampling of SARS-CoV-2 genome sequences.

9.
J Med Virol ; 94(10): 4830-4838, 2022 10.
Article in English | MEDLINE | ID: covidwho-1981856

ABSTRACT

Among numerous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concerns, Omicron is more infectious and immune-escaping, while Delta is more pathogenic. Here, we provide evidence for both intervariant and intravariant recombination of the rapidly evolving new SARS-CoV-2 genomes, including XD/XE/XF and BA.3, raising concerns of potential more infectious, immune-escaping, and disease-causing Omicron and Delta-Omicron variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Recombination, Genetic , SARS-CoV-2/genetics
10.
BMC Infect Dis ; 22(1): 641, 2022 Jul 24.
Article in English | MEDLINE | ID: covidwho-1957049

ABSTRACT

BACKGROUND: The COVID-19 pandemic has driven public health intervention strategies, including keeping social distance, wearing masks in crowded places, and having good health habits, to prevent the transmission of the novel coronavirus (SARS-CoV-2). However, it is unknown whether the use of these intervention strategies influences morbidity in other human infectious diseases, such as tuberculosis. METHODS: In this study, three prediction models were constructed to compare variations in PTB incidences after January 2020 without or with intervention includes strict and regular interventions, when the COVID-19 outbreak began in China. The non-interventional model was developed with an autoregressive integrated moving average (ARIMA) model that was trained with the monthly incidence of PTB in China from January 2005 to December 2019. The interventional model was established using an ARIMA model with a continuing intervention function that was trained with the monthly PTB incidence in China from January 2020 to December 2020. RESULTS: Starting with the assumption that no COVID-19 outbreak had occurred in China, PTB incidence was predicted, and then the actual incidence was compared with the predicted incidence. A remarkable overall decline in PTB incidence from January 2020 to December 2020 was observed, which was likely due to the potential influence of intervention policies for COVID-19. If the same intervention strategy is applied for the next 2 years, the monthly PTB incidence would reduce on average by about 1.03 per 100,000 people each month compared with the incidence predicted by the non-interventional model. The annual incidence estimated 59.15 under regular intervention per 100,000 in 2021, and the value would decline to 50.65 with strict interventions. CONCLUSIONS: Our models quantified the potential knock-on effect on PTB incidence of the intervention strategy used to control the transmission of COVID-19 in China. Combined with the feasibility of the strategies, these results suggested that continuous regular interventions would play important roles in the future prevention and control of PTB.


Subject(s)
COVID-19 , Tuberculosis, Pulmonary , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Humans , Incidence , Pandemics/prevention & control , SARS-CoV-2 , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/prevention & control
11.
Viruses ; 14(5)2022 05 18.
Article in English | MEDLINE | ID: covidwho-1903490

ABSTRACT

Early identification of adaptive mutations could provide timely help for the control and prevention of the COVID-19 pandemic. The fast accumulation of SARS-CoV-2 sequencing data provides important support, while also raising a great challenge for the recognition of adaptive mutations. Here, we proposed a computational strategy to detect potentially adaptive mutations from their fixed and parallel patterns in the phylogenetic trajectory. We found that the biological meanings of fixed substitution and parallel mutation are highly complementary, and can reasonably be integrated as a fixed and parallel (paraFix) mutation, to identify potentially adaptive mutations. Tracking the dynamic evolution of SARS-CoV-2, 37 sites in spike protein were identified as having experienced paraFix mutations. Interestingly, 70% (26/37) of them have already been experimentally confirmed as adaptive mutations. Moreover, most of the mutations could be inferred as paraFix mutations one month earlier than when they became regionally dominant. Overall, we believe that the concept of paraFix mutations will help researchers to identify potentially adaptive mutations quickly and accurately, which will provide invaluable clues for disease control and prevention.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics
12.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1884206

ABSTRACT

Being in the epicenter of the COVID-19 pandemic, our lab tested 193,054 specimens for SARS-CoV-2 RNA by diagnostic multiplex reverse transcription polymerase chain reaction (mRT-PCR) starting in March 2020, of which 17,196 specimens resulted positive. To investigate the dynamics of virus molecular evolution and epidemiology, whole genome amplification (WGA) and Next Generation Sequencing (NGS) were performed on 9516 isolates. 7586 isolates with a high quality were further analyzed for the mutation frequency and spectrum. Lastly, we evaluated the utility of the mRT-PCR detection pattern among 26 reinfected patients with repeat positive testing three months after testing negative from the initial infection. Our results show a continuation of the genetic divergence in viral genomes. Furthermore, our results indicate that independent mutations in the primer and probe regions of the nucleocapsid gene amplicon and envelope gene amplicon accumulate over time. Some of these mutations correlate with the changes of detection pattern of viral targets of mRT-PCR. Our data highlight the significance of a continuous genetic divergence on a gene amplification-based assay, the value of the mRT-PCR detection pattern for complementing the clinical diagnosis of reinfection, and the potential for WGA and NGS to identify mutation hotspots throughout the entire viral genome to optimize the design of the PCR-based gene amplification assay.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/genetics , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Multiplex Polymerase Chain Reaction , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
13.
Viruses ; 14(5):1087, 2022.
Article in English | MDPI | ID: covidwho-1857303

ABSTRACT

Early identification of adaptive mutations could provide timely help for the control and prevention of the COVID-19 pandemic. The fast accumulation of SARS-CoV-2 sequencing data provides important support, while also raising a great challenge for the recognition of adaptive mutations. Here, we proposed a computational strategy to detect potentially adaptive mutations from their fixed and parallel patterns in the phylogenetic trajectory. We found that the biological meanings of fixed substitution and parallel mutation are highly complementary, and can reasonably be integrated as a fixed and parallel (paraFix) mutation, to identify potentially adaptive mutations. Tracking the dynamic evolution of SARS-CoV-2, 37 sites in spike protein were identified as having experienced paraFix mutations. Interestingly, 70% (26/37) of them have already been experimentally confirmed as adaptive mutations. Moreover, most of the mutations could be inferred as paraFix mutations one month earlier than when they became regionally dominant. Overall, we believe that the concept of paraFix mutations will help researchers to identify potentially adaptive mutations quickly and accurately, which will provide invaluable clues for disease control and prevention.

14.
Biosaf Health ; 4(3): 171-178, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1803615

ABSTRACT

The recently emerged Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread around the world. Although many consensus mutations of the Omicron variant have been recognized, little is known about its genetic variation during its transmission in the population. Here, we comprehensively analyzed the genetic differentiation and diversity of the Omicron variant during its early outbreak. We found that Omicron achieved more structural variations, especially deletions, on the SARS-CoV-2 genome than the other four variants of concern (Alpha, Beta, Gamma, and Delta) in the same timescale. In addition, the Omicron variant acquired, except for 50 consensus mutations, seven great new non-synonymous nucleotide substitutions during its spread. Three of them are on the S protein, including S_A701V, S_L1081V, and S_R346K, which belong to the receptor-binding domain (RBD). The Omicron BA.1 branch could be divided into five divergent groups spreading across different countries and regions based on these seven novel mutations. Furthermore, we found that the Omicron variant possesses more mutations related to a faster transmission rate than the other SARS-CoV-2 variants by assessing the relationship between the genetic diversity and transmission rate. The findings indicated that more attention should be paid to the significant genetic differentiation and diversity of the Omicron variant for better disease prevention and control.

16.
Microbiol Spectr ; 10(2): e0219121, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1731263

ABSTRACT

SARS-CoV-2 continues adapting to human hosts during the current worldwide pandemic since 2019. This virus evolves through multiple means, such as single nucleotide mutations and structural variations, which has brought great difficulty to disease prevention and control of COVID-19. Structural variation, including multiple nucleotide changes like insertions and deletions, has a greater impact relative to single nucleotide mutation on both genome structures and protein functions. In this study, we found that deletion occurred frequently in not only SARS-CoV-2 but also in other SARS-related coronaviruses. These deletions showed obvious location bias and formed 45 recurrent deletion regions in the viral genome. Some of these deletions showed proliferation advantages, including four high-frequency deletions (nsp6 Δ106-109, S Δ69-70, S Δ144, and Δ28271) that were detected in around 50% of SARS-CoV-2 genomes and other 19 median-frequency deletions. In addition, the association between deletions and the WHO reported variants of concern (VOC) and variants of interest (VOI) of SARS-CoV-2 indicated that these variants had a unique combination of deletion patterns. In the spike (S) protein, the deletions in SARS-CoV-2 were mainly in the N-terminal domain. Some deletions, such as S Δ144/145 and S Δ243-244, have been confirmed to block the binding sites of neutralizing antibodies. Overall, this study revealed a conservative regional pattern and the potential effect of some deletions in SARS-CoV-2 over the whole genome, providing important evidence for potential epidemic control and vaccine development. IMPORTANCE Mutations in SARS-CoV-2 were studied extensively, while only the structure variations on the spike protein were discussed well in previous studies. To study the role of structural variations in virus evolution, we described the distribution of structure variations on the whole genome. Conserved patterns were found of deletions among SARS-CoV-2, SARS-CoV-2-like, and SARS-CoV-like viruses. There were 45 recurrent deletion regions (RDRs) in SARS-CoV-2 generated through the integration of deleted positions. In these regions, four high-frequency deletions parallelly appeared in multiple strains. Furthermore, in the spike protein, the deletions in SARS-CoV-2 were mainly in the N-terminal domain, blocking the binding sites of some neutralizing antibodies, while the structural variations in SARS-related coronavirus were mainly in the N-terminal domain and receptor binding domain. The receptor binding domain is highly related to hosting recognition. The deletions in the receptor binding domain may play a role in host adaption.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19/epidemiology , Humans , Mutation , Nucleotides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
18.
Brief Bioinform ; 22(2): 1297-1308, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343641

ABSTRACT

The life-threatening coronaviruses MERS-CoV, SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) have caused and will continue to cause enormous morbidity and mortality to humans. Virus-encoded noncoding RNAs are poorly understood in coronaviruses. Data mining of viral-infection-related RNA-sequencing data has resulted in the identification of 28 754, 720 and 3437 circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2, respectively. MERS-CoV exhibits much more prominent ability to encode circRNAs in all genomic regions than those of SARS-CoV-1/2. Viral circRNAs typically exhibit low expression levels. Moreover, majority of the viral circRNAs exhibit expressions only in the late stage of viral infection. Analysis of the competitive interactions of viral circRNAs, human miRNAs and mRNAs in MERS-CoV infections reveals that viral circRNAs up-regulated genes related to mRNA splicing and processing in the early stage of viral infection, and regulated genes involved in diverse functions including cancer, metabolism, autophagy, viral infection in the late stage of viral infection. Similar analysis in SARS-CoV-2 infections reveals that its viral circRNAs down-regulated genes associated with metabolic processes of cholesterol, alcohol, fatty acid and up-regulated genes associated with cellular responses to oxidative stress in the late stage of viral infection. A few genes regulated by viral circRNAs from both MERS-CoV and SARS-CoV-2 were enriched in several biological processes such as response to reactive oxygen and centrosome localization. This study provides the first glimpse into viral circRNAs in three deadly coronaviruses and would serve as a valuable resource for further studies of circRNAs in coronaviruses.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Circular/genetics , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Humans
19.
Brief Bioinform ; 22(2): 1267-1278, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343631

ABSTRACT

Accessory proteins play important roles in the interaction between coronaviruses and their hosts. Accordingly, a comprehensive study of the compositional diversity and evolutionary patterns of accessory proteins is critical to understanding the host adaptation and epidemic variation of coronaviruses. Here, we developed a standardized genome annotation tool for coronavirus (CoroAnnoter) by combining open reading frame prediction, transcription regulatory sequence recognition and homologous alignment. Using CoroAnnoter, we annotated 39 representative coronavirus strains to form a compositional profile for all of the accessary proteins. Large variations were observed in the number of accessory proteins of 1-10 for different coronaviruses, with SARS-CoV-2 and SARS-CoV having the most (9 and 10, respectively). The variation between SARS-CoV and SARS-CoV-2 accessory proteins could be traced back to related coronaviruses in other hosts. The genomic distribution of accessory proteins had significant intra-genus conservation and inter-genus diversity and could be grouped into 1, 4, 2 and 1 types for alpha-, beta-, gamma-, and delta-coronaviruses, respectively. Evolutionary analysis suggested that accessory proteins are more conservative locating before the N-terminal of proteins E and M (E-M), while they are more diverse after these proteins. Furthermore, comparison of virus-host interaction networks of SARS-CoV-2 and SARS-CoV accessory proteins showed that they share multiple antiviral signaling pathways, those involved in the apoptotic process, viral life cycle and response to oxidative stress. In summary, our study provides a tool for coronavirus genome annotation and builds a comprehensive profile for coronavirus accessory proteins covering their composition, classification, evolutionary pattern and host interaction.


Subject(s)
Biological Evolution , COVID-19/virology , SARS-CoV-2/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Genes, Viral , Humans , Molecular Sequence Annotation , Open Reading Frames , Protein Interaction Maps , SARS-CoV-2/genetics
20.
Cell Host Microbe ; 29(4): 503-507, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1309185

ABSTRACT

Since the outbreak of SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, the viral genome has acquired numerous mutations with the potential to increase transmission. One year after its emergence, we now further analyze emergent SARS-CoV-2 genome sequences in an effort to understand the evolution of this virus.


Subject(s)
COVID-19/virology , Evolution, Molecular , Genome, Viral , Mutation , SARS-CoV-2/genetics , COVID-19/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL